Страница 49  — Учебник. Демидова 3 класс 2 часть 

2.19 Высказывания со словами ВСЕ, НЕ ВСЕ, НИКАКИЕ, ЛЮБОЙ, КАЖДЫЙ

2. См. страницу 48

3. Костя сделал рисунок множеств.

Учебник. Демидова 3 класс 2 часть. Страница 49

Какое из множеств является подмножеством другого? Почему?

Множество «Розы» и множество «Ромашки» являются подмножествами множества «Цветы», поскольку и розы и ромашки являются цветами.

Какое из множеств не является подмножеством другого? Почему?

Множество «Цветы» не является подмножеством множеств «Ромашки» или «Розы», поскольку далеко не все цветы являются ромашками или розами, существуют и другие цветы.

Также множество «Розы» не является подмножеством «Ромашки» и наоборот «Ромашки» не являются подмножеством «Розы», поскольку розы — это не ромашки, а ромашки — это не розы. Можно сказать, что эти множества не пересекаются, поскольку у них нет ни одного общего элемента.

Составьте для этих множеств истинные высказывания:

а) все ромашки — … ;

ВСЕ ромашки — цветы. (Это значит, что все без исключения ромашки являются цветами и это действительно так)

б) все … -цветы;

ВСЕ розы — цветы. (Это значит, что все без исключения розы являются цветами и это действительно так)

в) не каждый цветок — … ;

НЕ КАЖДЫЙ цветок — роза. (Это значит, существуют цветы, не являющиеся розами. Действительно, васильки, одуваньчики, гладиолусы и миллионы других видов цветов не являются розами)

г) никакие розы — не … .

НИКАКИЕ розы — не ромашки. (Это значит, что ни одну из роз нельзя назвать ромашкой. Действительно, розы и ромашки — это совершенно разные виды цветов. Логическое высказывание  «НИКАКИЕ розы — не ромашки» звучит немного не по-русски, но это общепринятая установившаяся форма логического высказывания. Её надо просто запомнить)

Какие ещё высказывания можно составить к этим множествам?

НИКАКИЕ ромашки — не розы.

НЕ ВСЕ цветы — ромашки.

НЕ ВСЕ цветы — розы.

ЛЮБЫЕ розы — цветы.

КАЖДАЯ ромашка — цветок.

4. Найдите рисунки множеств, которые соответствуют ложным высказываниям.

Учебник. Демидова 3 класс 2 часть. Страница 49

На рисунке показано, что множество «Вороны» является подмножеством «Галки». Если верить рисунку, то можно составить высказывание: «ВСЕ вороны — галки», что не соответствует истине. То есть этот рисунок соответствует ложному высказыванию.

Учебник. Демидова 3 класс 2 часть. Страница 49

На рисунке показано, что множество «Зайцы» множество «Тигры» являются подмножествами множества «Животные». Если верить рисунку, то можно составить высказывание: «ВСЕ зайцы и тигры — животные», что соответствует истине. То есть этот рисунок соответствует истиному высказыванию.

Учебник. Демидова 3 класс 2 часть. Страница 49На рисунке показано, что множество «Четырехугольники» является подмножеством множества «Прямоугольники» и, в свою очередь, множество «Прямоугольники» является подмножеством множества «Квадраты».

Если верить рисунку, то можно составить высказывания: «ВСЕ четырехугольники — прямоугольники», «ВСЕ прямоугольники — квадраты» и «ВСЕ четырёхугольники — квадраты». Ни одно из этих высказываний не соответствует истине. То есть этот рисунок соответствует ложным высказываниям.

Ответ: рисунки а) и в).

5. а) Выполните деление с остатком.

Учебник. Демидова 3 класс 2 часть. Страница 49

б) Вычислите:

Учебник. Демидова 3 класс 2 часть. Страница 49 Учебник. Демидова 3 класс 2 часть. Страница 49

6. Найдите значение выражений при a — b = 240.

Учебник. Демидова 3 класс 2 часть. Страница 49 Учебник. Демидова 3 класс 2 часть. Страница 49

Придумайте задачу к одному из выражений.

Вертолет летит на 240 км/ч быстрее автомобиля. На сколько быстрее автомобиля будет лететь вертолёт, если и автомобиль, и вертолёт увеличат скорость на 60 км/ч?

Решение. Пусть скорость вертолёта a км/ч, а скорость автомобиля  b км/ч. Тогда a — b = 240. 

Если и автомобиль, и вертолёт прибавят скорость на 60 км/ч, то можем составить выражение:

(a + 60)  — (b + 60) = a + 60 — b — 60 = (a —  b) + (60 — 60) = (a —  b) + 0 = a —  b = 240 (км/ч).

Ответ: Вертолёт будет лететь быстрее автомобиля все также на 240 км/ч.

7. Для циркового номера «Собака-математик» Витя вырезал из золотой фольги некоторое число четырёхугольников. Третью часть этих четырёхугольников составляли прямоугольники, а 1/8 этих прямоугольников — 4 квадрата. Сколько четырёхугольников вырезал Витя из золотой фольги?
1) 4 • 8 = 32 (фигуры) — прямоугольники.

2) 32 • 3 = 96 (фигур) — четырёхугольники.

Ответ: 96 четырехугольников.